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For better video quality in the H.264/AVC video coding technology, motion estimation has massive growth due to 
improvements in searching algorithms and improved significantly in compression efficiency and complexity, specifically in 
area, power and throughput. In this paper, an efficient sum of absolute difference (SAD) tree and its hardware architecture 
have proposed in Residue Number System (RNS) based moduli and implements the full search variable block size motion 
estimation (FSVBSME). The main advantage is that for performing carry free addition operation, residue number system is 
being considered as a non weighted number system to binary number system, RNS is mostly suitable for image 
compression techniques and loss of image quality is very less. In hardware implementation, it occupies less area and takes 
less execution time for output result. This proposed architecture is capable of achieving the less hardware cost and logical 
elements, high throughput required to perform real time motion estimation. Experimental results show that synthesized with 
TSMC 180nm CMOS, the proposed design occupies 12.9k logic gates at 352MHZ and consumes 19mW power to encode 
1920X1088 HDTV video frames at 30 frames per second. 
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1. Introduction 
 

Motion Estimation (ME) is a vital part of most 

motion-compensated video coding standards [1]. It is a 

process for estimating motion vectors (MV) that transform 

from reference frame to the current frame in a video 

sequence coding. FSVBSME is a temporal redundancy 

elimination technique between two or more consecutive 

frames for video compression. H.264/AVC is the standard 

video coding developed by the ITU-T. ME [2-3] is mostly 

based on a block-matching [4-8] technique is playing a 

major role in H.264/AVC by using the temporal 

redundancy between consecutive successive frames. In 

H.264, a video frame split by using macro blocks (MB) of 

16x16 size in a FSVBSME approach. So, FSVBSME 

architecture for the H.264/AVC have been proposed [9-

10]. In arithmetic systems, the speed is limited by making 

the logic decisions and the extent to which the low order 

numeric significance decisions can affect higher 

significance results. This issue is described by the addition 

operation, by which a low-order carry can have a rippling 

effect on a sum. RNS have been applied to achieve high-

speed and low-power VLSI implementations, typically 

utilized in signal and image processing. To convert 

representation of the numbers from the residues to a 

positional, The conventional magnitude comparison 

systems in RNS [11] utilize the Chinese Remainder 

Theorem (CRT) and the Mixed Radix Conversion (MRC). 

However, both these methods are inefficient, the main 

reason is that the CRT requires modulo M (number system 

range) operations. MRC is a slow sequential technique. 

Recently, a New Chinese Reminder Theorem [12] was 

proposed to analyze the magnitude of the number in RNS. 

In this paper, the proposed algorithm takes advantage of 

the characteristic of the conjugate moduli set (2𝑛 − 2𝑘 −
1) offers better performance of delay, area and speed. The 

new modulo adder could be isolated into four units, such 

as, 1. Preprocessing unit, 2. Prefix computation unit, 3. 

Carries correction unit, and 4. Sum computation unit. In 

the proposed scheme, To obtain the final carries required 

in the sum computation module, the carry information of 

A+B+T could be calculated by prefix computation unit. So 

that the proposed modulo (2𝑛 − 2𝑘 − 1) adder can get the 

best delay performance. The proposed algorithm has two 

main reasons. It is the best algorithm leading to VLSI 

architecture with the real time applications for better 

performance in weighted number systems. And it is 

described by implementing an efficient RNS for 

computing the minimum Sum of Absolute Differences 

(SAD), with more time consuming video motion 

estimation application. 

The paper is classified as follows. Section II discussed 

about SAD adder tree. Section III discussed about Residue 

Number System and its modular addition procedure and 

RNS modulo (2𝑛 − 2𝑘 − 1) adder. Section IV describes 

the motion estimation  using RNS. Finally, section V 

concludes this paper. 

 

2. SAD adder tree 
 

In the 16 SAD architecture, each one is in charge of 

the SAD computation of one primitive 4x4 sub-block in 
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parallel. There are 16 absolute differences computed and 

then the 16 absolute values are fed into the adder unit to 

complete a 4x4SAD. Adding the 16 absolute differences to 

obtain one 4x4SAD is implemented by employing 

multilevel 3-2 compressors, as shown in Fig. 1 (a). Fig. 1 

(b) shows the structure of the 3-2 compressor, where the k  

binary inputs of a,b and c bit values a0-ak, b0-bk, and c0-ck 

respectively. And the depth of input value is 8 bit, so k 

equals to 8. The output sum0-sumk stand for each of the  

summer bit of the input three binary bits, and carry0-carryk 

stands for each of the carry bit.  

 

 

 

 

Full Adder Full Adder Full Adder 

ck ak bk c1 c0 b1 b0 a0 a1 

carryk carry0 carry1 sum0 sum1 sumk  
 

Fig. 1. (a) Structure of 3-2 compressor. 

 

 

 
3-2 Compressor 3-2 Compressor 3-2 Compressor 3-2 Compressor 3-2 Compressor 

3-2 Compressor 3-2 Compressor 3-2 Compressor 

3-2 Compressor 3-2 Compressor 

3-2 Compressor 3-2 Compressor 

3-2 Compressor 

3-2 Compressor 

2 5 4 3 6 7 11 10 9 8 14 13 12 15 1 0 

|abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| 

4x4 SAD   
Fig. 1. (b) Structure of adder unit. 

 

 

One 16×16 MB is partitioned into 16 4x4 sub-block, 

denoted as C0-C15,as shown in Fig. 2 (a). During the 

processing procedure, eight 8×4 SADs and 4x8 SADs can 

be first obtained simultaneously, and then four 8×8 SADs 

can be produced at the same time, then two 16x8 SADs 

and 8x16 SADs be synchronously achieved subsequently, 

and finally the 16×16 SAD can be obtained, shown in Fig. 

2 (b). All of the 41 SADs should be stored in the registers 

for the reuse of the following unit. The generation of the 

whole 41 SADs of one MB can be implemented within 6 

cycles.  

 

 

C0 C1 C2 C3 

C4 C5 C6 C7 

C8 C9 C10 C11 

C12 C13 C14 C15 

 

Fig. 2. (a) Block Pattern of H.264. 

 

 

reg: 16x16 SADs 

regs:            

2 16x8SADs 

2 8x16SADs 

regs:            

8 8x4SADs   

8 4x8SADs 

regs: 4 8x8 SADs 

regs: 16 4x4 SADs 
C1 C0 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

B0 B1 B2 B3 

C0-1 C0-4 C4-5 C1-5 C2-3 C2-6 C6-7 C3-7 C8-9 C8-12 C12-13 C9-13 C10-11 C10-14 C14-15 C11-15 

B0-1 B0-2 B1-3 B2-3 

 

Fig. 2. (b) Structure of Adder Array. 

 

 

Mostly, the processing systems concerned about the 

speed of arithmetic. In arithmetic systems, the speed is 

limited by the way of building block that makes logic 

decisions and the extent to which decisions of least 

numeric significance can affect results of most 

significance. This problem is best designed by the addition 

operation, in which a lower-order carry can have a rippling 

effect on a sum. The adder tree array is a carry effective. 

In the adder tree array, the addition operation effect the 

carries on digits of most significance. For every addition 

operation, it facilitates the realization of less speed and 

more power. The most significance sum value waits for 

the carry values for execution result. Hence, the adder tree 

consumes more power and less speed. 

 

 

3. Residue number system and its modular  
    addition procedure 
 

The advantage of the RNS adder tree is that the 

absence of carry propagation between its arithmetic units, 

and for every addition operation, it  is no need wait for 

carry values. Hence, It facilitates the realization of more 

speed, less power arithmetic. The Residue Number System 

is defined as co-prime modular radix groups {𝑚1, 𝑚2, … ,

𝑚𝑁},  where N is greater than 1, 𝐺𝐶𝐷(𝑚𝑖 , 𝑚𝑗) = 1, 𝑖 ≠

𝑗, 𝑖, 𝑗 = 1,2, … , 𝑁, and  𝐺𝐶𝐷(𝑚𝑖 , 𝑚𝑗) is the greatest 

common divisor of 𝑚𝑖𝑎𝑛𝑑  𝑚𝑗. By residues respect to the 

modulus 𝑚𝑖of the integer X in [0,M) can be represented as 

(𝑥1, 𝑥2, … , 𝑥𝑁), where 𝑥𝑖 = 〈𝑋〉𝑚𝑖 , 𝑀 = ∏ 𝑚𝑖
𝑁
𝑖=1 , 𝑖 =

1,2, … , 𝑁. In the range of [0,M), the integers A,B, and C 

can be represented RNS numbers as (𝑎1, 𝑎2, … ,
𝑎𝑁), (𝑏1, 𝑏2, … , 𝑏𝑁) and (𝑐1, 𝑐2, … , 𝑐𝑁) respectively. 

According to Guassian modular algorithms, 𝐶𝑖 =
 (𝑎𝑖  ∆ 𝑏𝑖)𝑚𝑖 , where ∆ represents addition operation, 

subtraction operation and multiplication operation.  

For the range of [0,M) integers A and B, modulo 𝑚 

addition is defined as  
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𝐶 =  〈𝐴 + 𝐵〉𝑚 = {
𝐴 + 𝐵                𝐴 + 𝐵 < 𝑚
𝐴 + 𝐵 −𝑚       𝐴 + 𝐵 ≥ 𝑚

       (1) 

If 𝐶 =  〈𝐴 + 𝐵〉𝑚 and the modular adder bit width is  n-bit, 

where 𝑛 =  ⌈log2𝑚⌉ . So that, 

𝐶 =  {
𝐴 + 𝐵                       𝐴 + 𝐵 + 𝑇 < 2𝑛

〈𝐴 + 𝐵 + 𝑇〉2𝑛        𝐴 + 𝐵 + 𝑇 ≥ 2
𝑛            (2) 

Here the correction 𝑇 =  2𝑛 −𝑚. The basic rule in 

most modular adder design is that if A+B+T carry bit is 1, 

the result of modular addition is n LSBs of A+B+T, 

otherwise, the result is A+B. Then, Parallel prefix addition 

operation is extensively accepted in binary adder design. 

Present sum and carry bits can be calculated with the 

previous carries and inputs. The prefix computation is 

calculated as 

 

(𝑔𝑖 , 𝑝𝑖) =  (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕ 𝑏𝑖)                       (3)     

Where carry generation bit gi and carry propagation bit pi. 

In the sum computational unit, the carries ci from the 

prefix computation unit and the partial sum of the pre-

processing unit are utilized to calculate the final sum bits 

si, 

 

 𝑠𝑖 = 𝑝𝑖⊕ 𝑐𝑖   𝑖 = 0,1, … , 𝑛 − 1.          (4) 
  

RNS MODULO 𝟐𝒏 − 𝟐𝒌 − 𝟏 ADDER 

The modulo (2𝑛 − 2𝑘 − 1)adder is divided into four 

different modules, is shown in Fig. 3.  

 

 
Fig. 3. The proposed modulo 2𝑛 − 2𝑘 − 1 adder structure. 

 

 

1. Pre-processing Unit: The pre-processing unit is used to 

generate the carry generation gi and carry propagation pi 

bits of A+B+T.  

𝑇 = 2⌈log2 2
𝑛−2𝑘−1⌉ −  𝑚 =  2𝑘 +  1               (5) 

 

Actually, A1 is utilized for lower k-bits and A2 is 

utilized for higher n-k bits addition,and it can be 

performed in the computation of A+B+T. Here, the binary 

representation of A, B and T are  

(𝑎𝑛−1…𝑎𝑘  𝑎𝑘−1   … 𝑎1𝑎0),   (𝑏𝑛−1…𝑏𝑘  𝑏𝑘−1   … 𝑏1𝑏0) and 

“000…001 ⏟      
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟      
𝑘 𝑏𝑖𝑡

” respectively. The operation of the 

adder A1 and A2 can be represented as 

 

{
𝑆𝐴1 = 𝑎𝑘−1…𝑎0 + 𝑏𝑘−1…𝑏0 + 𝑇𝐴1             

𝑆𝐴2 = 𝑎𝑘−1…𝑎0 + 𝑏𝑘−1…𝑏0 + 𝑇𝐴2 + 𝐶𝐴1
       (6) 

 

Where 𝑇𝐴1 = 00…001⏟      
𝑘 𝑏𝑖𝑡

, 𝑇𝐴2 = 000…001 ⏟      
(𝑛−𝑘)𝑏𝑖𝑡

and 𝐶𝐴1is the 

carry out bit of A1 adder. 

In Fig. 1, A1 can be declared as k-bit adder in the 

lowest carry-in bit for zero e every bit value except the 

LSB value.  the carry generation and carry propagation 

bits are  

 

{
(𝑔0, 𝑝0) =  (𝑎0 + 𝑏0, 𝑎0⊕ 𝑏0)                   𝑖 = 0

(𝑔𝑖 , 𝑝𝑖)  =  (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕ 𝑏𝑖)        𝑖 = 1,2, … , 𝑘 − 1
       (7) 

 

The three inputs of adder A2 are 

𝑎𝑛−1…𝑎𝑘 , 𝑏𝑛−1…𝑏𝑘and 𝑇𝐴2in binary. The adder A2 

depends on both the constant 𝑇𝐴2   and the A1carry out bit 

of 𝐶𝐴1 . For adder A2, Simple carry save adder (SCSA) 

reduces the number of inputs form three to two. When 

𝑖 = 𝑘, 𝑘 + 1,… , 𝑛 − 1, for ai and bi; the second stage of gi 

and pi in SCSA and the final outputs of pre-processing unit 

is defined as 

 

(𝑔𝑖
′, 𝑝𝑖

′)  =  (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕𝑏𝑖)              (8) 

 

 

{
(𝑔𝑘 , 𝑝𝑘) = (𝑝𝑘

′ , 𝑝𝑘
′ )                                                  𝑖 = 𝑘 

(𝑔𝑖 , 𝑝𝑖) =  (𝑝𝑖
′𝑔𝑖−1
′ , 𝑝𝑖

′⊕𝑔𝑖−1
′ )    𝑖 =  𝑘 + 1,… , 𝑛 − 1

             

(9) 

 

From Eq. 6 and 8, the computational prefix is 

obtained. And carry out of SCSA is defined from the 

A+B+T carry-out bit. 

 

  𝐶𝑆𝐶𝑆𝐴 = 𝑎𝑛−1𝑏𝑛−1 =  𝑔𝑛−1
′    (10) 

 

 

4. Carry generation unit 
 

The pre-processing unit is with the carry-generation 

and carry-propagation bits, the carries 𝑐𝑖
𝑇  (𝑖 = 1, 2, … , 𝑛)  

of A+B+T can be obtained. To determine the carry out bit 

of A+B+T, 𝐶𝑆𝐶𝑆𝐴 is combined with the prefix tree carry-

out bit. 

 
𝐶𝑜𝑢𝑡 =  𝐶𝑆𝐶𝑆𝐴 + 𝑐𝑛

𝑇 = 𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 0 
           =  𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 𝑙 + 𝑃𝑛−1 ∶ 𝑙𝐺𝑙−1 ∶ 0 

   =  𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 𝑙 + 𝑃𝑛−1 ∶ 𝑙 𝑐𝑙
𝑇

       (11) 

Where 0 < 𝑙 ≤ 𝑛 − 1. 

 

 

5. Carry correction unit 
 

The real carries 𝑐𝑖
𝑟𝑒𝑎𝑙   of the carry correction unit is 

used for each bit in the final sum computation. For modulo 
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2𝑛 − 2𝑘 − 1 adder, T is 2𝑘 + 1 represented as 

000…001 ⏟      
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟      
𝑘 𝑏𝑖𝑡

 in binary. The A+B+T computation,  

𝑆𝐴 = 𝐴 + 𝐵 +  000…001 ⏟      
(𝑛)𝑏𝑖𝑡

 and 𝑆𝐵 = 𝑆𝐴 + 

000…001 ⏟      
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟      
𝑘 𝑏𝑖𝑡

.  

 

Carry correction of A1 

 

The binary representation of T is 

000…001 ⏟      
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟      
𝑘 𝑏𝑖𝑡

, 𝑐𝑖
𝑇 can be regarded as the carry bits 

of (A+B+T-1) + cin and cin is 1. The first correction output 

𝑐𝑖+1
𝑐1  result is 

 

                          𝑐𝑖+1
𝑐1  = 𝑐𝑜𝑢𝑡  𝑐𝑖+1

𝑇−1 + 𝑐𝑜𝑢𝑡𝑐𝑖+1
𝑇 =

 𝑐𝑜𝑢𝑡𝑃𝑖∶0𝑐𝑖+1
𝑇 + 𝑐𝑜𝑢𝑡𝑐𝑖+1

𝑇 = 𝑐𝑖+1
𝑇 (𝑐𝑜𝑢𝑡 + 𝑃𝑖∶0)            (12) 

 

Carry correction of A2 

 

If 𝑐𝑜𝑢𝑡 is zero, 𝑐𝑖
𝑟𝑒𝑎𝑙   is equal to the carry of A +  B +

 T − 1 – 2k, else the 𝑐𝑖
𝑟𝑒𝑎𝑙    is equal to  A +  B +  T carry. 

i.e, 𝑐𝑖
𝑟𝑒𝑎𝑙   = 𝑐𝑖

𝑐1 . The inputs of adder  A2 are 

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′  and 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 1. the carry-in bit 

𝑐𝑘
𝑐1  is the A1 carry-out bit. The two inputs additions of A2 

are 𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′  and 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 𝑐𝑘
𝑐1with the carry-

in bit value 1.  

 

{

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′  + 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 1 + 00…𝑐𝑘
𝑐1

⏟    
(𝑛−𝑘) 𝑏𝑖𝑡

     𝑎)

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′  + 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′  𝑐𝑘
𝑐1 + 00…1⏟  

(𝑛−𝑘) 𝑏𝑖𝑡

   (𝑏)

 (13) 

 

6. Sum computation unit:  
 

The partial sum bits of A + B and A + B + T for final 

sum computation are defined by the correction carry. If 

𝑐𝑜𝑢𝑡is zero, the correction carry 𝑐𝑖
𝑟𝑒𝑎𝑙  is the A + B carry 

bit. Else, A + B + T carry bit. 

 

 

{

𝑝0
0 = 𝑝0, 𝑝0

1 = 𝑝0                                                             𝑖 = 0 

𝑝𝑘
0 = 𝑝𝑘 , 𝑝𝑘

1 = 𝑝𝑘                                                              𝑖 = 𝑘

𝑝𝑖
0 = 𝑝𝑖

1 = 𝑝𝑖                      𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1
 (14) 

 

Where 𝑝𝑖
0 and 𝑝𝑖

1 are the partial sum bits of A + B and A + 

B + T respectively, (i =  0, 1, … , n − 1). Hence  

 

𝑠0 = 𝑐𝑜𝑢𝑡 𝑝0
0 + 𝑐𝑜𝑢𝑡 𝑝0

1 = 𝑐𝑜𝑢𝑡 𝑝0 + 𝑐𝑜𝑢𝑡 𝑝0 = 𝑐𝑜𝑢𝑡 ⊕
 𝑝0                  (15) 

 

𝑠𝑘 =  𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ (𝑐𝑜𝑢𝑡 𝑝𝑘

0 + 𝑐𝑜𝑢𝑡 𝑝𝑘
1) =  𝑐𝑘

𝑟𝑒𝑎𝑙⊕
(𝑐𝑜𝑢𝑡 𝑝𝑘 + 𝑐𝑜𝑢𝑡 𝑝𝑘) = 𝑐𝑘

𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘            (16) 

 

When 𝑖 = 1,… , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1 

 

𝑠𝑖 = 𝑐𝑖
𝑟𝑒𝑎𝑙  ⊕ 𝑝𝑖                       (17) 

The final sum bits are  

 

𝑠𝑖

= {

𝑐𝑜𝑢𝑡  ⊕ 𝑝𝑘                                             i = 0

𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘                                             𝑖 = 𝑘 

𝑐𝑖
𝑟𝑒𝑎𝑙  ⊕ 𝑝𝑖         𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1

    (18) 

 

Here 𝑐𝑖
𝑟𝑒𝑎𝑙 , 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘  can be obtained at the same 

time. Hence, no extra delay can be occurred. 

 

 

RNS architecture 

 

The VLSI implementation of modulo 2𝑛 − 2𝑘 − 1 

adder architecture is shown in Fig. 5. And describing the 

shapes of the modulo 2𝑛 − 2𝑘 − 1 adder in Fig. 4.  

The “white circle” pattern in Fig. 4 is the pre-

processing unit and it is utilized to generate carry 

generation and carry propagation bits for prefix 

calculation. And the fixed input  “1” at the 1
st 

and the 4
th
 

positions, the “ triangle ” and “ white square box” patterns 

are utilized for this special condition. These patterns 

computations considered by eq (7), (8) and (9).  

The prefix computation unit is defined in the “black 

circle” pattern. This pattern consists of one OR gate and 

one AND gate. It is used for carry generation path. 

However, To compute the propagation bits, the “gray 

circle” pattern of prefix tree final stage is not required.  

The “triangle black circle” pattern is computing the 

𝑐𝑜𝑢𝑡  in Fig. 4. From eq (10),  𝑐𝑜𝑢𝑡 can get after an OR 

gate.The “pentagon box”, “gray square box” and “square 

cross box”patterns used for the correction of carry unit.  

The “cross circle” and “cross nibble circle” patterns 

are performing the final sum computation. The cross circle 

pattern performs the XOR operation and “cross nibble 

circle” pattern performs the XOR operation with one of 

it’s input is inverted. Because, in eq (17) 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘  

computation can be performed. 

 

 
  

Fig. 4. Describing the shapes of modulo 2𝑛 − 2𝑘 − 1. 
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(a) 

(b) 

𝑥(𝑦 + 𝑧 ) 

𝑥  

𝑦  𝑧  

 
Fig. 4. Implementation architecture of Modulo 2𝑛 − 2𝑘 − 1 

adder (n=8, k=4). 

 

 

7. Motion esimation using RNS 
 

FSVBSME (BME) searches the best matching block 

between the current frame and a reference frame. The most 

frequently utilized technique to find the distance is SAD. 

The search algorithm can be varied from optimal FS to 

sub-optimal fast search algorithms.  

In H.264/AVC, frame of a video is split into macro 

blocks of 16x16 size. Each macro block is segmented into 

different sub-blocks, shown in Fig. 5. Motion estimation is 

conceded 7 different modules, mode 1 has a 16x16 macro 

block, mode 2 has two 16x8 sub-blocks, mode 3 has two 

8x16 sub-blocks, and mode 4 has four 8x8 sub-blocks. 

Then, each block of 8x8 size is split into  sub-blocks. 

Mode 5 has two 8x4 sub-blocks, mode 6 has two 4x8 sub-

blocks, and mode 7 has four 4x4 sub-blocks. The total 

possible partitions are 41. In FSVBSME, to calculate the 

minimum SAD (SADmin) of 4x4 block and achieve all the 

SADmin from all these 41 modes slicing. 

 

 0 

0 
0 

0 

0 

0 

0 

1 
1 

1 

1 

1 

1 2 

2 3 

3 

Mode 1 (16x16) Mode 2 (16x8) Mode 3 (8x16) Mode4 (8x8) 

Mode 5 

(8x4) 

Mode 6 

(4x8) 

Mode7 

(4x4) 

 

Fig. 5. The different sub-block of partitions and its positions. 

 

 

In H.264/AVC video coding, motion estimation is 

mainly concentrating the temporal redundancy between 

successive frames. For the H.264 FSVBSME 

implementation, the proposed architecture has the 

advantages of low latency and high throughput. Fig. 6 

shows the block diagram of the proposed architecture, 

which contains the external memory, memory controller, 

current and reference frames, RNS adder tree, RNS SAD 

array, SAD comparator and mode decision. 

 

 

 

External Memory 

Current 

Pixel 

Memory 

Controller 

Reference 

Pixel 

RNS SAD ARRAY 

SAD 

Comparator 

Mode 

Decision 

Neighboring 

MV 

Best Mode 
 

Fig. 6. The proposed architecture of motion  

estimation using RNS. 

 

 

From Fig. 6, first of all, the memory controller reads 

the current pixel and reference pixel from the external 

memory by a system bus, and send to the Current pixel 

and reference pixel values to be stored; Secondly, the 

current pixel and reference pixel values are responsible to 

send the data to RNS adder arrays to calculate SAD and 
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array of RNS adder, shown in Fig. 7. When all the 

searching points are looped over, the cost value (SAD) of 

the final 41 sub-blocks can be achieved. Then, send the 

costs of these 41 parallel sub-blocks to Comparator SAD 

Tree Array to calculate the module information, such as 

the optimal position cost and the motion vector. Finally, 

the mode decision decides the best motion vector,  by 

finding the position of the present cost values and previous 

neighboring motion vector position. 

 

 

RNS SAD Array 

 

To measure the similarity between the two image 

window blocks, the sum of absolute differences (SAD) 

algorithm is being evaluated for image comparison and 

object recognition in digital image processing. It works by 

taking the absolute difference between each pixel in the 

current frame and corresponding reference frame in the 

image window block. It is widely utilized for stereo vision, 

the generation of disparity maps for stereo images, optical 

flow, motion estimation for video compression. In Fig. 7, 

the SAD is computed the 16 differences from the current 

and reference pixels in the 4x4 window size image. 

 

 

 

|Curr.-Ref.| 

|Curr.-Ref.| 

 

|Curr.-Ref.| 

 

 

 

RNS 

ADDER 

UNIT 

SADi 

Curr.pixel_0 

Ref.pixel_0 

Curr.pixel_1 

Ref.pixel_1 

Curr.pixel_15 

Ref.pixel_15 

 

Fig. 7. Sum of Absolute Difference (SAD) Unit. 

 

 

Each macro block is split into seven sub-blocks. First,  

the block will be calculated the 4x4 window size block. In 

the 4x4 window. In Fig.8, the RNS adder tree is done the 

carry free addition operation in the parallel process. So, 

the execution of the RNS adder tree process speed is 

increased. One 16x16 MB is partitioned into 16 4x4 sub-

block, denoted as C0-C15,as shown in Fig. 9. During the 

processing procedure, eight 8x4 SADs and 4x8 SADs can 

be first obtained simultaneously, and then four 8x8 SADs 

can be produced at the same time, then two 16x8 SADs 

and 8x16 SADs be synchronously achieved subsequently, 

and finally the 16x16 SAD can be obtained. All of the 41 

SADs should be stored in the registers for the reuse of the 

following unit. These 41 SADs of one MB can be 

implemented in 4 cycles.  
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Reg Reg Reg Reg Reg Reg Reg Reg 
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ADDER 

RNS 

ADDER 

RNS 

ADDER 

Reg Reg Reg Reg 

RNS 

ADDER 

RNS 

ADDER 

Reg Reg 

RNS 

ADDER 

Reg 

2 5 4 3 6 7 11 10 9 8 14 13 12 16 15 1 

4x4 SAD 

Fig. 8. RNS Adder Tree. 

 

 

reg: 16x16 SADs 

regs:            

2 16x8SADs 

2 8x16SADs 
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8 8x4SADs   

8 4x8SADs 

regs: 4 8x8 SADs 

regs: 16 4x4 SADs 
C1 C0 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 
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RNS RNS RNS RNS 
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Fig. 9. RNS SAD Tree. 

 

 

SAD comparator 

 

The SAD comparator compares each 16x16 SAD of 

the selected object window, and then compares the finest 

SAD value. In Fig. 9, The SAD comparator first 

accumulates the output of SAD 16x16 present and 

previous SAD 16x16 stored values, and then it compares 

to conclude the minimum SAD value by using the 

comparator.   

 SAD 16X16  

 

 

 

 

 

 

 

 

 

 

Minimum SAD 

    RNS ADDER 

REG 

   COMP 

 
 

Fig. 9. SAD comparator. 
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Mode decision 

 

In mode decision, the motion vector (MV) declares 

that the position of the minimum SAD in the x and y 

directions. Here, x and y coordinates are denoted as row 

and column directions respectively.  

 

 
Fig. 10. Motion Vector Difference. 

 

 

The MVU, MVL,MVUR,MVUL are the Upper motion 

vector, Lower motion vector, Upper right motion vector 

and Lower left of the motion vectors respectively.  These 

four MVs are located at the corresponding motion vector’s 

position. From both MVUR, MVUL, the position of motion 

vector can be selected Either MVUR or MVUL. In Fig. 10 

(a), A Single motion vector predictor (SMVP) can be 

predicted by the neighbor motion vector value. In Fig. 10 

(b), the motion vector difference computes the difference 

between current MV position and SMVP positions. In Fig. 

11(a) (b), the Best mode can be predicted from Both the 

corresponding SAD16x16 output and the motion vector 

difference values;. Here, λmotion is common to both the 

corresponding SADs for sub-blocks of other sizes and 

each sub-block. It can be computed in the 16 4x4 input 

SAD trees. 

 

 
 

Fig. 11. Mode Decision Module. 

 

 

8. Discussion and result 
 

This architecture is implemented with TSMC CMOS 

180nm technology. The characteristics and the 

performance of proposed algorithm based on the 

FSVBSME. Table 1 describes the comparison between the 

proposed algorithm with the existing algorithm techniques. 

In Ref. [5], After logic synthesis using SMIC 130nm 

standard cell library, the integer ME architecture allows 

36k logic gates with the processing of 1280x720 (720HD) 

at 38fps under a clock frequency of 300MHz with full 

search block matching algorithm (FS-BMA) in a search 

range [-32, +32]. In Ref. [7], The Integer Motion 

Estimation processor chip was designed in the UMC 

180nm technology, the result in a circuit with 32.3k logic 

gates. And a clock frequency of 300MHz can be estimated 
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with a processing capacity  for HDTV (1920x1088 

@30fps) and a search range of 32x32. In Ref. [10], a novel 

VLSI design was designed with TSMC CMOS 0.18μm 

technology, the result in the architecture occupies 15.8k 

gates at the frequency of 200MHz, which can constantly 

reduce about 66% of the RD related computation with a 

negligible quality loss. It is expected to be utilized in the 

hardware module in a real-time HDTV (1920×1088p) 

H.264 encoder. Proposed Method results show that 

synthesized with TSMC 180nm CMOS, the proposed 

design occupies 12.9k logic gates at 352MHZ and 

consumes 79mW power to encode 1920X1080 HDTV 

video frames at 30 frames per second.  

 
Table 1. The Differences Between The Proposed and Existing Algorithm Techniques. 

 

Reference Technology 
Search 

Range 

Logic 

Gate 

Count 

Frequency Throughput Power 

Ref. [5] 
SMIC 

130nm 
65 × 65 36k 300MHZ 1280×720@38fps - 

Ref. [7] 
UMC 

180nm 
32 × 32 32.3k 300MHZ 1920×1088@30fps 115mW 

Ref. [10] 

TSMC 

180nm 

CMOS 

32 × 32 15.8k 200MHZ 1920×1088p@30fps - 

PROPOSED 

TSMC 

180nm 

CMOS 

32 × 32 12.9k 352MHZ 1920×1088p@30fps 79mW 

 

 

10. Conclusion 
 

In this paper, the proposed algorithm implemented the 

fast mode decision and its architecture in RNS module for 

real time applications of motion estimation for video 

compression. By finding the ways of representing 

numbers, the best way is that reduce the sequential effect 

of carries on digits of most significance, which is a carry 

free arithmetic. The advantage of the RNS adder tree is 

that the absence of carry propagation between its 

arithmetic units, and for every addition operation. This 

carry-free arithmetic represents that the way of 

approaching on the speed at which addition can be 

performed. And it  is no need to wait for carry values. 

Hence, It facilitates the realization of high-speed, low-

power arithmetic. This proposed architecture is achieved 

that the less logical elements, high throughput required to 

perform real time motion estimation. In the results the 

proposed method is synthesized with TSMC 180nm 

CMOS, and occupies 12.9k logic gates at 352MHZ and 

consumes 79mW power to encode 1920X1088 HDTV 

video frames at 30 frames per second in search range of 

32x32. 
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