
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 9, No. 5-6, May – June 2015, p. 738 - 745

An improved fast mode decision algorithm for VLSI

architecture implementation

J. CHARLES RAJESH KUMAR

a,*
, T. VANCHINATHAN

b
 P. SUDHARSAN

c

a
Lecturer, Department of Electrical & Computer Engineering, Effat University, Kingdom of Saudi Arabia

b
Director – AXIIP Semiconductor (P) Ltd.

c
Director – AXIIP Semiconductor (P) Ltd.

For better video quality in the H.264/AVC video coding technology, motion estimation has massive growth due to
improvements in searching algorithms and improved significantly in compression efficiency and complexity, specifically in
area, power and throughput. In this paper, an efficient sum of absolute difference (SAD) tree and its hardware architecture
have proposed in Residue Number System (RNS) based moduli and implements the full search variable block size motion
estimation (FSVBSME). The main advantage is that for performing carry free addition operation, residue number system is
being considered as a non weighted number system to binary number system, RNS is mostly suitable for image
compression techniques and loss of image quality is very less. In hardware implementation, it occupies less area and takes
less execution time for output result. This proposed architecture is capable of achieving the less hardware cost and logical
elements, high throughput required to perform real time motion estimation. Experimental results show that synthesized with
TSMC 180nm CMOS, the proposed design occupies 12.9k logic gates at 352MHZ and consumes 19mW power to encode
1920X1088 HDTV video frames at 30 frames per second.

(Received April 9, 2015; accepted May 7, 2015)

Keywords: SAD RNS adder, SAD comparator, Mode decision

1. Introduction

Motion Estimation (ME) is a vital part of most

motion-compensated video coding standards [1]. It is a

process for estimating motion vectors (MV) that transform

from reference frame to the current frame in a video

sequence coding. FSVBSME is a temporal redundancy

elimination technique between two or more consecutive

frames for video compression. H.264/AVC is the standard

video coding developed by the ITU-T. ME [2-3] is mostly

based on a block-matching [4-8] technique is playing a

major role in H.264/AVC by using the temporal

redundancy between consecutive successive frames. In

H.264, a video frame split by using macro blocks (MB) of

16x16 size in a FSVBSME approach. So, FSVBSME

architecture for the H.264/AVC have been proposed [9-

10]. In arithmetic systems, the speed is limited by making

the logic decisions and the extent to which the low order

numeric significance decisions can affect higher

significance results. This issue is described by the addition

operation, by which a low-order carry can have a rippling

effect on a sum. RNS have been applied to achieve high-

speed and low-power VLSI implementations, typically

utilized in signal and image processing. To convert

representation of the numbers from the residues to a

positional, The conventional magnitude comparison

systems in RNS [11] utilize the Chinese Remainder

Theorem (CRT) and the Mixed Radix Conversion (MRC).

However, both these methods are inefficient, the main

reason is that the CRT requires modulo M (number system

range) operations. MRC is a slow sequential technique.

Recently, a New Chinese Reminder Theorem [12] was

proposed to analyze the magnitude of the number in RNS.

In this paper, the proposed algorithm takes advantage of

the characteristic of the conjugate moduli set (2𝑛 − 2𝑘 −
1) offers better performance of delay, area and speed. The

new modulo adder could be isolated into four units, such

as, 1. Preprocessing unit, 2. Prefix computation unit, 3.

Carries correction unit, and 4. Sum computation unit. In

the proposed scheme, To obtain the final carries required

in the sum computation module, the carry information of

A+B+T could be calculated by prefix computation unit. So

that the proposed modulo (2𝑛 − 2𝑘 − 1) adder can get the

best delay performance. The proposed algorithm has two

main reasons. It is the best algorithm leading to VLSI

architecture with the real time applications for better

performance in weighted number systems. And it is

described by implementing an efficient RNS for

computing the minimum Sum of Absolute Differences

(SAD), with more time consuming video motion

estimation application.

The paper is classified as follows. Section II discussed

about SAD adder tree. Section III discussed about Residue

Number System and its modular addition procedure and

RNS modulo (2𝑛 − 2𝑘 − 1) adder. Section IV describes

the motion estimation using RNS. Finally, section V

concludes this paper.

2. SAD adder tree

In the 16 SAD architecture, each one is in charge of

the SAD computation of one primitive 4x4 sub-block in

An improved fast mode decision algorithm for VLSI architecture implementation 739

parallel. There are 16 absolute differences computed and

then the 16 absolute values are fed into the adder unit to

complete a 4x4SAD. Adding the 16 absolute differences to

obtain one 4x4SAD is implemented by employing

multilevel 3-2 compressors, as shown in Fig. 1 (a). Fig. 1

(b) shows the structure of the 3-2 compressor, where the k

binary inputs of a,b and c bit values a0-ak, b0-bk, and c0-ck

respectively. And the depth of input value is 8 bit, so k

equals to 8. The output sum0-sumk stand for each of the

summer bit of the input three binary bits, and carry0-carryk

stands for each of the carry bit.

Full Adder Full Adder Full Adder

ck ak bk c1 c0 b1 b0 a0 a1

carryk carry0 carry1 sum0 sum1 sumk

Fig. 1. (a) Structure of 3-2 compressor.

3-2 Compressor 3-2 Compressor 3-2 Compressor 3-2 Compressor 3-2 Compressor

3-2 Compressor 3-2 Compressor 3-2 Compressor

3-2 Compressor 3-2 Compressor

3-2 Compressor 3-2 Compressor

3-2 Compressor

3-2 Compressor

2 5 4 3 6 7 11 10 9 8 14 13 12 15 1 0

|abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs| |abs|

4x4 SAD
Fig. 1. (b) Structure of adder unit.

One 16×16 MB is partitioned into 16 4x4 sub-block,

denoted as C0-C15,as shown in Fig. 2 (a). During the

processing procedure, eight 8×4 SADs and 4x8 SADs can

be first obtained simultaneously, and then four 8×8 SADs

can be produced at the same time, then two 16x8 SADs

and 8x16 SADs be synchronously achieved subsequently,

and finally the 16×16 SAD can be obtained, shown in Fig.

2 (b). All of the 41 SADs should be stored in the registers

for the reuse of the following unit. The generation of the

whole 41 SADs of one MB can be implemented within 6

cycles.

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

Fig. 2. (a) Block Pattern of H.264.

reg: 16x16 SADs

regs:

2 16x8SADs

2 8x16SADs

regs:

8 8x4SADs

8 4x8SADs

regs: 4 8x8 SADs

regs: 16 4x4 SADs
C1 C0 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

B0 B1 B2 B3

C0-1 C0-4 C4-5 C1-5 C2-3 C2-6 C6-7 C3-7 C8-9 C8-12 C12-13 C9-13 C10-11 C10-14 C14-15 C11-15

B0-1 B0-2 B1-3 B2-3

Fig. 2. (b) Structure of Adder Array.

Mostly, the processing systems concerned about the

speed of arithmetic. In arithmetic systems, the speed is

limited by the way of building block that makes logic

decisions and the extent to which decisions of least

numeric significance can affect results of most

significance. This problem is best designed by the addition

operation, in which a lower-order carry can have a rippling

effect on a sum. The adder tree array is a carry effective.

In the adder tree array, the addition operation effect the

carries on digits of most significance. For every addition

operation, it facilitates the realization of less speed and

more power. The most significance sum value waits for

the carry values for execution result. Hence, the adder tree

consumes more power and less speed.

3. Residue number system and its modular
 addition procedure

The advantage of the RNS adder tree is that the

absence of carry propagation between its arithmetic units,

and for every addition operation, it is no need wait for

carry values. Hence, It facilitates the realization of more

speed, less power arithmetic. The Residue Number System

is defined as co-prime modular radix groups {𝑚1, 𝑚2, … ,

𝑚𝑁}, where N is greater than 1, 𝐺𝐶𝐷(𝑚𝑖 , 𝑚𝑗) = 1, 𝑖 ≠

𝑗, 𝑖, 𝑗 = 1,2, … , 𝑁, and 𝐺𝐶𝐷(𝑚𝑖 , 𝑚𝑗) is the greatest

common divisor of 𝑚𝑖𝑎𝑛𝑑 𝑚𝑗. By residues respect to the

modulus 𝑚𝑖of the integer X in [0,M) can be represented as

(𝑥1, 𝑥2, … , 𝑥𝑁), where 𝑥𝑖 = 〈𝑋〉𝑚𝑖 , 𝑀 = ∏ 𝑚𝑖
𝑁
𝑖=1 , 𝑖 =

1,2, … , 𝑁. In the range of [0,M), the integers A,B, and C

can be represented RNS numbers as (𝑎1, 𝑎2, … ,
𝑎𝑁), (𝑏1, 𝑏2, … , 𝑏𝑁) and (𝑐1, 𝑐2, … , 𝑐𝑁) respectively.

According to Guassian modular algorithms, 𝐶𝑖 =
 (𝑎𝑖 ∆ 𝑏𝑖)𝑚𝑖 , where ∆ represents addition operation,

subtraction operation and multiplication operation.

For the range of [0,M) integers A and B, modulo 𝑚

addition is defined as

740 J. Charles Rajesh Kumar, T. Vanchinathan P. Sudharsan

𝐶 = 〈𝐴 + 𝐵〉𝑚 = {
𝐴 + 𝐵 𝐴 + 𝐵 < 𝑚
𝐴 + 𝐵 −𝑚 𝐴 + 𝐵 ≥ 𝑚

 (1)

If 𝐶 = 〈𝐴 + 𝐵〉𝑚 and the modular adder bit width is n-bit,

where 𝑛 = ⌈log2𝑚⌉ . So that,

𝐶 = {
𝐴 + 𝐵 𝐴 + 𝐵 + 𝑇 < 2𝑛

〈𝐴 + 𝐵 + 𝑇〉2𝑛 𝐴 + 𝐵 + 𝑇 ≥ 2
𝑛 (2)

Here the correction 𝑇 = 2𝑛 −𝑚. The basic rule in

most modular adder design is that if A+B+T carry bit is 1,

the result of modular addition is n LSBs of A+B+T,

otherwise, the result is A+B. Then, Parallel prefix addition

operation is extensively accepted in binary adder design.

Present sum and carry bits can be calculated with the

previous carries and inputs. The prefix computation is

calculated as

(𝑔𝑖 , 𝑝𝑖) = (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕ 𝑏𝑖) (3)

Where carry generation bit gi and carry propagation bit pi.

In the sum computational unit, the carries ci from the

prefix computation unit and the partial sum of the pre-

processing unit are utilized to calculate the final sum bits

si,

 𝑠𝑖 = 𝑝𝑖⊕ 𝑐𝑖 𝑖 = 0,1, … , 𝑛 − 1. (4)

RNS MODULO 𝟐𝒏 − 𝟐𝒌 − 𝟏 ADDER

The modulo (2𝑛 − 2𝑘 − 1)adder is divided into four

different modules, is shown in Fig. 3.

Fig. 3. The proposed modulo 2𝑛 − 2𝑘 − 1 adder structure.

1. Pre-processing Unit: The pre-processing unit is used to

generate the carry generation gi and carry propagation pi

bits of A+B+T.

𝑇 = 2⌈log2 2
𝑛−2𝑘−1⌉ − 𝑚 = 2𝑘 + 1 (5)

Actually, A1 is utilized for lower k-bits and A2 is

utilized for higher n-k bits addition,and it can be

performed in the computation of A+B+T. Here, the binary

representation of A, B and T are

(𝑎𝑛−1…𝑎𝑘 𝑎𝑘−1 … 𝑎1𝑎0), (𝑏𝑛−1…𝑏𝑘 𝑏𝑘−1 … 𝑏1𝑏0) and

“000…001 ⏟
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟
𝑘 𝑏𝑖𝑡

” respectively. The operation of the

adder A1 and A2 can be represented as

{
𝑆𝐴1 = 𝑎𝑘−1…𝑎0 + 𝑏𝑘−1…𝑏0 + 𝑇𝐴1

𝑆𝐴2 = 𝑎𝑘−1…𝑎0 + 𝑏𝑘−1…𝑏0 + 𝑇𝐴2 + 𝐶𝐴1
 (6)

Where 𝑇𝐴1 = 00…001⏟
𝑘 𝑏𝑖𝑡

, 𝑇𝐴2 = 000…001 ⏟
(𝑛−𝑘)𝑏𝑖𝑡

and 𝐶𝐴1is the

carry out bit of A1 adder.

In Fig. 1, A1 can be declared as k-bit adder in the

lowest carry-in bit for zero e every bit value except the

LSB value. the carry generation and carry propagation

bits are

{
(𝑔0, 𝑝0) = (𝑎0 + 𝑏0, 𝑎0⊕ 𝑏0) 𝑖 = 0

(𝑔𝑖 , 𝑝𝑖) = (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕ 𝑏𝑖) 𝑖 = 1,2, … , 𝑘 − 1
 (7)

The three inputs of adder A2 are

𝑎𝑛−1…𝑎𝑘 , 𝑏𝑛−1…𝑏𝑘and 𝑇𝐴2in binary. The adder A2

depends on both the constant 𝑇𝐴2 and the A1carry out bit

of 𝐶𝐴1 . For adder A2, Simple carry save adder (SCSA)

reduces the number of inputs form three to two. When

𝑖 = 𝑘, 𝑘 + 1,… , 𝑛 − 1, for ai and bi; the second stage of gi

and pi in SCSA and the final outputs of pre-processing unit

is defined as

(𝑔𝑖
′, 𝑝𝑖

′) = (𝑎𝑖𝑏𝑖 , 𝑎𝑖⊕𝑏𝑖) (8)

{
(𝑔𝑘 , 𝑝𝑘) = (𝑝𝑘

′ , 𝑝𝑘
′) 𝑖 = 𝑘

(𝑔𝑖 , 𝑝𝑖) = (𝑝𝑖
′𝑔𝑖−1
′ , 𝑝𝑖

′⊕𝑔𝑖−1
′) 𝑖 = 𝑘 + 1,… , 𝑛 − 1

(9)

From Eq. 6 and 8, the computational prefix is

obtained. And carry out of SCSA is defined from the

A+B+T carry-out bit.

 𝐶𝑆𝐶𝑆𝐴 = 𝑎𝑛−1𝑏𝑛−1 = 𝑔𝑛−1
′ (10)

4. Carry generation unit

The pre-processing unit is with the carry-generation

and carry-propagation bits, the carries 𝑐𝑖
𝑇 (𝑖 = 1, 2, … , 𝑛)

of A+B+T can be obtained. To determine the carry out bit

of A+B+T, 𝐶𝑆𝐶𝑆𝐴 is combined with the prefix tree carry-

out bit.

𝐶𝑜𝑢𝑡 = 𝐶𝑆𝐶𝑆𝐴 + 𝑐𝑛

𝑇 = 𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 0
 = 𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 𝑙 + 𝑃𝑛−1 ∶ 𝑙𝐺𝑙−1 ∶ 0

 = 𝐶𝑆𝐶𝑆𝐴 + 𝐺𝑛−1 ∶ 𝑙 + 𝑃𝑛−1 ∶ 𝑙 𝑐𝑙
𝑇

 (11)

Where 0 < 𝑙 ≤ 𝑛 − 1.

5. Carry correction unit

The real carries 𝑐𝑖
𝑟𝑒𝑎𝑙 of the carry correction unit is

used for each bit in the final sum computation. For modulo

An improved fast mode decision algorithm for VLSI architecture implementation 741

2𝑛 − 2𝑘 − 1 adder, T is 2𝑘 + 1 represented as

000…001 ⏟
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟
𝑘 𝑏𝑖𝑡

 in binary. The A+B+T computation,

𝑆𝐴 = 𝐴 + 𝐵 + 000…001 ⏟
(𝑛)𝑏𝑖𝑡

 and 𝑆𝐵 = 𝑆𝐴 +

000…001 ⏟
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟
𝑘 𝑏𝑖𝑡

.

Carry correction of A1

The binary representation of T is

000…001 ⏟
(𝑛−𝑘)𝑏𝑖𝑡

00…001⏟
𝑘 𝑏𝑖𝑡

, 𝑐𝑖
𝑇 can be regarded as the carry bits

of (A+B+T-1) + cin and cin is 1. The first correction output

𝑐𝑖+1
𝑐1 result is

 𝑐𝑖+1
𝑐1 = 𝑐𝑜𝑢𝑡 𝑐𝑖+1

𝑇−1 + 𝑐𝑜𝑢𝑡𝑐𝑖+1
𝑇 =

 𝑐𝑜𝑢𝑡𝑃𝑖∶0𝑐𝑖+1
𝑇 + 𝑐𝑜𝑢𝑡𝑐𝑖+1

𝑇 = 𝑐𝑖+1
𝑇 (𝑐𝑜𝑢𝑡 + 𝑃𝑖∶0) (12)

Carry correction of A2

If 𝑐𝑜𝑢𝑡 is zero, 𝑐𝑖
𝑟𝑒𝑎𝑙 is equal to the carry of A + B +

 T − 1 – 2k, else the 𝑐𝑖
𝑟𝑒𝑎𝑙 is equal to A + B + T carry.

i.e, 𝑐𝑖
𝑟𝑒𝑎𝑙 = 𝑐𝑖

𝑐1 . The inputs of adder A2 are

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′ and 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 1. the carry-in bit

𝑐𝑘
𝑐1 is the A1 carry-out bit. The two inputs additions of A2

are 𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′ and 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 𝑐𝑘
𝑐1with the carry-

in bit value 1.

{

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′ + 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 1 + 00…𝑐𝑘
𝑐1

⏟
(𝑛−𝑘) 𝑏𝑖𝑡

 𝑎)

𝑝𝑛−1
′ … 𝑝𝑘+1

′ 𝑝𝑘
′ + 𝑔𝑛−2

′ … 𝑔𝑘+1
′ 𝑔𝑘

′ 𝑐𝑘
𝑐1 + 00…1⏟

(𝑛−𝑘) 𝑏𝑖𝑡

 (𝑏)

 (13)

6. Sum computation unit:

The partial sum bits of A + B and A + B + T for final

sum computation are defined by the correction carry. If

𝑐𝑜𝑢𝑡is zero, the correction carry 𝑐𝑖
𝑟𝑒𝑎𝑙 is the A + B carry

bit. Else, A + B + T carry bit.

{

𝑝0
0 = 𝑝0, 𝑝0

1 = 𝑝0 𝑖 = 0

𝑝𝑘
0 = 𝑝𝑘 , 𝑝𝑘

1 = 𝑝𝑘 𝑖 = 𝑘

𝑝𝑖
0 = 𝑝𝑖

1 = 𝑝𝑖 𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1
 (14)

Where 𝑝𝑖
0 and 𝑝𝑖

1 are the partial sum bits of A + B and A +

B + T respectively, (i = 0, 1, … , n − 1). Hence

𝑠0 = 𝑐𝑜𝑢𝑡 𝑝0
0 + 𝑐𝑜𝑢𝑡 𝑝0

1 = 𝑐𝑜𝑢𝑡 𝑝0 + 𝑐𝑜𝑢𝑡 𝑝0 = 𝑐𝑜𝑢𝑡 ⊕
 𝑝0 (15)

𝑠𝑘 = 𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ (𝑐𝑜𝑢𝑡 𝑝𝑘

0 + 𝑐𝑜𝑢𝑡 𝑝𝑘
1) = 𝑐𝑘

𝑟𝑒𝑎𝑙⊕
(𝑐𝑜𝑢𝑡 𝑝𝑘 + 𝑐𝑜𝑢𝑡 𝑝𝑘) = 𝑐𝑘

𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘 (16)

When 𝑖 = 1,… , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1

𝑠𝑖 = 𝑐𝑖
𝑟𝑒𝑎𝑙 ⊕ 𝑝𝑖 (17)

The final sum bits are

𝑠𝑖

= {

𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘 i = 0

𝑐𝑘
𝑟𝑒𝑎𝑙 ⊕ 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘 𝑖 = 𝑘

𝑐𝑖
𝑟𝑒𝑎𝑙 ⊕ 𝑝𝑖 𝑖 = 1, … , 𝑘 − 1, 𝑘 + 1,… , 𝑛 − 1

 (18)

Here 𝑐𝑖
𝑟𝑒𝑎𝑙 , 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘 can be obtained at the same

time. Hence, no extra delay can be occurred.

RNS architecture

The VLSI implementation of modulo 2𝑛 − 2𝑘 − 1

adder architecture is shown in Fig. 5. And describing the

shapes of the modulo 2𝑛 − 2𝑘 − 1 adder in Fig. 4.

The “white circle” pattern in Fig. 4 is the pre-

processing unit and it is utilized to generate carry

generation and carry propagation bits for prefix

calculation. And the fixed input “1” at the 1
st

and the 4
th

positions, the “ triangle ” and “ white square box” patterns

are utilized for this special condition. These patterns

computations considered by eq (7), (8) and (9).

The prefix computation unit is defined in the “black

circle” pattern. This pattern consists of one OR gate and

one AND gate. It is used for carry generation path.

However, To compute the propagation bits, the “gray

circle” pattern of prefix tree final stage is not required.

The “triangle black circle” pattern is computing the

𝑐𝑜𝑢𝑡 in Fig. 4. From eq (10), 𝑐𝑜𝑢𝑡 can get after an OR

gate.The “pentagon box”, “gray square box” and “square

cross box”patterns used for the correction of carry unit.

The “cross circle” and “cross nibble circle” patterns

are performing the final sum computation. The cross circle

pattern performs the XOR operation and “cross nibble

circle” pattern performs the XOR operation with one of

it’s input is inverted. Because, in eq (17) 𝑐𝑜𝑢𝑡 ⊕ 𝑝𝑘

computation can be performed.

Fig. 4. Describing the shapes of modulo 2𝑛 − 2𝑘 − 1.

742 J. Charles Rajesh Kumar, T. Vanchinathan P. Sudharsan

𝑏7 𝑎7 𝑏6 𝑎6 𝑏5 𝑎5 𝑏4 𝑎4 𝑏3 𝑎3 𝑏2 𝑎2 𝑏1 𝑎1
𝑏0 𝑎0 “1”

(𝑔7
′ , 𝑝7

′)

,

(𝑔6
′ , 𝑝6

′)

,

(𝑔5
′ , 𝑝5

′)

,

(𝑔4
′ , 𝑝4

′)

,

(𝑔3
′ , 𝑝3

′)

,

(𝑔2
′ , 𝑝2

′)

,

(𝑔1
′ , 𝑝1

′)

,

(𝑔0
′ , 𝑝0

′)

,

(𝑔7
′ , 𝑝7

′)

,

(𝑔6
′ , 𝑝6

′)

,

(𝑔5
′ , 𝑝5

′)

,

(𝑔4
′ , 𝑝4

′)

,

𝑔7
′ ,

, 𝐶7
𝑇

,
𝐶6
𝑇

,

𝐶5
𝑇

,

𝐶4
𝑇

,

𝑝7
𝑝6 𝑝5

𝑝3

𝑝2 𝑝1

𝑝4

𝑝0

𝐶4
𝑇

,

𝑝0

𝑝3:0 𝐶3
𝑇

,

𝑝2:0 𝐶2
𝑇

,

𝑝1:0 𝐶1
𝑇

,

𝑎 𝑏

𝑠7 𝑠6 𝑠5 𝑠4 𝑠3 𝑠2 𝑠1 𝑠0

𝑝3:0

,
𝑝4

𝑝3

𝑝2

𝐶𝑜𝑢𝑡

𝐶7
𝑟𝑒𝑎𝑙

,

𝐶6
𝑟𝑒𝑎𝑙

,

𝐶5
𝑟𝑒𝑎𝑙

,

𝐶4
𝑟𝑒𝑎𝑙

,

𝐶3
𝑟𝑒𝑎𝑙

,

𝐶2
𝑟𝑒𝑎𝑙

,

𝐶1
𝑟𝑒𝑎𝑙

,

𝑥 𝑦

𝑥𝑦, 𝑥 ⊕ 𝑦)

(𝐺, 𝑃)(𝐺 ′ , 𝑃′) 𝑦

(𝐺, 𝑃). (𝐺 ′ , 𝑃′) 𝑦

(𝐺, 𝑃)(𝐺 ′ , 𝑃′) 𝑦

(𝐺 + 𝑃𝐺 ′)

𝑥 𝑦 𝑧

𝑥(𝑦 + 𝑧)

≡
1 0

0

𝑥 𝑦

𝑥 ⊕ 𝑦

𝑥 𝑦

𝑥 + 𝑦

𝑥(𝐺, 𝑃) 𝑦

𝑥 + 𝐺 + 𝑃𝑦

 𝑝0 , 𝑝1 , … 𝑝𝑛−2

𝑒 𝑓

𝑒 = 𝑃𝑘−1:0
 (𝑝𝑘 ⊕𝐶𝑘

𝑇)

𝑓 = 𝑃𝑖:𝑘+1
 (𝑝𝑘 ⊕𝐶𝑘

𝑇)

𝐶𝑘
𝑇

𝑥 "1"

𝑥, 𝑥

𝑥 𝑦 "1"

𝑥 + 𝑦, 𝑥 ⊕ 𝑦

𝑎 𝑏

𝑃𝑘−1:0

(a)

(b)

𝑥(𝑦 + 𝑧)

𝑥

𝑦 𝑧

Fig. 4. Implementation architecture of Modulo 2𝑛 − 2𝑘 − 1

adder (n=8, k=4).

7. Motion esimation using RNS

FSVBSME (BME) searches the best matching block

between the current frame and a reference frame. The most

frequently utilized technique to find the distance is SAD.

The search algorithm can be varied from optimal FS to

sub-optimal fast search algorithms.

In H.264/AVC, frame of a video is split into macro

blocks of 16x16 size. Each macro block is segmented into

different sub-blocks, shown in Fig. 5. Motion estimation is

conceded 7 different modules, mode 1 has a 16x16 macro

block, mode 2 has two 16x8 sub-blocks, mode 3 has two

8x16 sub-blocks, and mode 4 has four 8x8 sub-blocks.

Then, each block of 8x8 size is split into sub-blocks.

Mode 5 has two 8x4 sub-blocks, mode 6 has two 4x8 sub-

blocks, and mode 7 has four 4x4 sub-blocks. The total

possible partitions are 41. In FSVBSME, to calculate the

minimum SAD (SADmin) of 4x4 block and achieve all the

SADmin from all these 41 modes slicing.

 0

0
0

0

0

0

0

1
1

1

1

1

1 2

2 3

3

Mode 1 (16x16) Mode 2 (16x8) Mode 3 (8x16) Mode4 (8x8)

Mode 5

(8x4)

Mode 6

(4x8)

Mode7

(4x4)

Fig. 5. The different sub-block of partitions and its positions.

In H.264/AVC video coding, motion estimation is

mainly concentrating the temporal redundancy between

successive frames. For the H.264 FSVBSME

implementation, the proposed architecture has the

advantages of low latency and high throughput. Fig. 6

shows the block diagram of the proposed architecture,

which contains the external memory, memory controller,

current and reference frames, RNS adder tree, RNS SAD

array, SAD comparator and mode decision.

External Memory

Current

Pixel

Memory

Controller

Reference

Pixel

RNS SAD ARRAY

SAD

Comparator

Mode

Decision

Neighboring

MV

Best Mode

Fig. 6. The proposed architecture of motion

estimation using RNS.

From Fig. 6, first of all, the memory controller reads

the current pixel and reference pixel from the external

memory by a system bus, and send to the Current pixel

and reference pixel values to be stored; Secondly, the

current pixel and reference pixel values are responsible to

send the data to RNS adder arrays to calculate SAD and

An improved fast mode decision algorithm for VLSI architecture implementation 743

array of RNS adder, shown in Fig. 7. When all the

searching points are looped over, the cost value (SAD) of

the final 41 sub-blocks can be achieved. Then, send the

costs of these 41 parallel sub-blocks to Comparator SAD

Tree Array to calculate the module information, such as

the optimal position cost and the motion vector. Finally,

the mode decision decides the best motion vector, by

finding the position of the present cost values and previous

neighboring motion vector position.

RNS SAD Array

To measure the similarity between the two image

window blocks, the sum of absolute differences (SAD)

algorithm is being evaluated for image comparison and

object recognition in digital image processing. It works by

taking the absolute difference between each pixel in the

current frame and corresponding reference frame in the

image window block. It is widely utilized for stereo vision,

the generation of disparity maps for stereo images, optical

flow, motion estimation for video compression. In Fig. 7,

the SAD is computed the 16 differences from the current

and reference pixels in the 4x4 window size image.

|Curr.-Ref.|

|Curr.-Ref.|

|Curr.-Ref.|

RNS

ADDER

UNIT

SADi

Curr.pixel_0

Ref.pixel_0

Curr.pixel_1

Ref.pixel_1

Curr.pixel_15

Ref.pixel_15

Fig. 7. Sum of Absolute Difference (SAD) Unit.

Each macro block is split into seven sub-blocks. First,

the block will be calculated the 4x4 window size block. In

the 4x4 window. In Fig.8, the RNS adder tree is done the

carry free addition operation in the parallel process. So,

the execution of the RNS adder tree process speed is

increased. One 16x16 MB is partitioned into 16 4x4 sub-

block, denoted as C0-C15,as shown in Fig. 9. During the

processing procedure, eight 8x4 SADs and 4x8 SADs can

be first obtained simultaneously, and then four 8x8 SADs

can be produced at the same time, then two 16x8 SADs

and 8x16 SADs be synchronously achieved subsequently,

and finally the 16x16 SAD can be obtained. All of the 41

SADs should be stored in the registers for the reuse of the

following unit. These 41 SADs of one MB can be

implemented in 4 cycles.

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

RNS

ADDER

Reg Reg Reg Reg Reg Reg Reg Reg

RNS

ADDER

RNS

ADDER

RNS

ADDER

Reg Reg Reg Reg

RNS

ADDER

RNS

ADDER

Reg Reg

RNS

ADDER

Reg

2 5 4 3 6 7 11 10 9 8 14 13 12 16 15 1

4x4 SAD

Fig. 8. RNS Adder Tree.

reg: 16x16 SADs

regs:

2 16x8SADs

2 8x16SADs

regs:

8 8x4SADs

8 4x8SADs

regs: 4 8x8 SADs

regs: 16 4x4 SADs
C1 C0 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

B0 B1 B2 B3

C0-1 C0-4 C4-5 C1-5 C2-3 C2-6 C6-7 C3-7 C8-9 C8-12 C12-13 C9-13 C10-11 C10-14 C14-15 C11-15

B0-1 B0-2 B1-3 B2-3

RNS RNS RNS RNS RNS RNS RNS RNS

RNS RNS RNS RNS RNS RNS RNS RNS RNS

RNS RNS RNS RNS

RNS RNS RNS RNS

RNS

Fig. 9. RNS SAD Tree.

SAD comparator

The SAD comparator compares each 16x16 SAD of

the selected object window, and then compares the finest

SAD value. In Fig. 9, The SAD comparator first

accumulates the output of SAD 16x16 present and

previous SAD 16x16 stored values, and then it compares

to conclude the minimum SAD value by using the

comparator.

 SAD 16X16

Minimum SAD

 RNS ADDER

REG

 COMP

Fig. 9. SAD comparator.

744 J. Charles Rajesh Kumar, T. Vanchinathan P. Sudharsan

Mode decision

In mode decision, the motion vector (MV) declares

that the position of the minimum SAD in the x and y

directions. Here, x and y coordinates are denoted as row

and column directions respectively.

Fig. 10. Motion Vector Difference.

The MVU, MVL,MVUR,MVUL are the Upper motion

vector, Lower motion vector, Upper right motion vector

and Lower left of the motion vectors respectively. These

four MVs are located at the corresponding motion vector’s

position. From both MVUR, MVUL, the position of motion

vector can be selected Either MVUR or MVUL. In Fig. 10

(a), A Single motion vector predictor (SMVP) can be

predicted by the neighbor motion vector value. In Fig. 10

(b), the motion vector difference computes the difference

between current MV position and SMVP positions. In Fig.

11(a) (b), the Best mode can be predicted from Both the

corresponding SAD16x16 output and the motion vector

difference values;. Here, λmotion is common to both the

corresponding SADs for sub-blocks of other sizes and

each sub-block. It can be computed in the 16 4x4 input

SAD trees.

Fig. 11. Mode Decision Module.

8. Discussion and result

This architecture is implemented with TSMC CMOS

180nm technology. The characteristics and the

performance of proposed algorithm based on the

FSVBSME. Table 1 describes the comparison between the

proposed algorithm with the existing algorithm techniques.

In Ref. [5], After logic synthesis using SMIC 130nm

standard cell library, the integer ME architecture allows

36k logic gates with the processing of 1280x720 (720HD)

at 38fps under a clock frequency of 300MHz with full

search block matching algorithm (FS-BMA) in a search

range [-32, +32]. In Ref. [7], The Integer Motion

Estimation processor chip was designed in the UMC

180nm technology, the result in a circuit with 32.3k logic

gates. And a clock frequency of 300MHz can be estimated

An improved fast mode decision algorithm for VLSI architecture implementation 745

with a processing capacity for HDTV (1920x1088

@30fps) and a search range of 32x32. In Ref. [10], a novel

VLSI design was designed with TSMC CMOS 0.18μm

technology, the result in the architecture occupies 15.8k

gates at the frequency of 200MHz, which can constantly

reduce about 66% of the RD related computation with a

negligible quality loss. It is expected to be utilized in the

hardware module in a real-time HDTV (1920×1088p)

H.264 encoder. Proposed Method results show that

synthesized with TSMC 180nm CMOS, the proposed

design occupies 12.9k logic gates at 352MHZ and

consumes 79mW power to encode 1920X1080 HDTV

video frames at 30 frames per second.

Table 1. The Differences Between The Proposed and Existing Algorithm Techniques.

Reference Technology
Search

Range

Logic

Gate

Count

Frequency Throughput Power

Ref. [5]
SMIC

130nm
65 × 65 36k 300MHZ 1280×720@38fps -

Ref. [7]
UMC

180nm
32 × 32 32.3k 300MHZ 1920×1088@30fps 115mW

Ref. [10]

TSMC

180nm

CMOS

32 × 32 15.8k 200MHZ 1920×1088p@30fps -

PROPOSED

TSMC

180nm

CMOS

32 × 32 12.9k 352MHZ 1920×1088p@30fps 79mW

10. Conclusion

In this paper, the proposed algorithm implemented the

fast mode decision and its architecture in RNS module for

real time applications of motion estimation for video

compression. By finding the ways of representing

numbers, the best way is that reduce the sequential effect

of carries on digits of most significance, which is a carry

free arithmetic. The advantage of the RNS adder tree is

that the absence of carry propagation between its

arithmetic units, and for every addition operation. This

carry-free arithmetic represents that the way of

approaching on the speed at which addition can be

performed. And it is no need to wait for carry values.

Hence, It facilitates the realization of high-speed, low-

power arithmetic. This proposed architecture is achieved

that the less logical elements, high throughput required to

perform real time motion estimation. In the results the

proposed method is synthesized with TSMC 180nm

CMOS, and occupies 12.9k logic gates at 352MHZ and

consumes 79mW power to encode 1920X1088 HDTV

video frames at 30 frames per second in search range of

32x32.

“Compliance with Ethical Standards”

1. Disclosure of potential conflicts of interest - No

conflict of Interest.

2. Research involving Human Participants and/or

Animals –NA

3. Informed consent – NA

References

 [1] Rec. H.264/ISO/IEC 11496-10, “Advanced Video

 Coding “, Final Committee Draft, Document JVT-

 E022, 2002.

 [2] Yeu-Shen-Jehng, Liang-Gee-Chen, Tzi-Dar Chiueh,

 IEEE transaction on signal processing, 41(2), (1993).

 [3] Swee Yeow Yap, John V. McCanny, IEEE computer

 society, 2003.

 [4] Swee Yeow Yap, John V. McCanny, IEEE

 Transactions On Circuits And Systems, 51(7), 384

 (2004).

 [5] Meihua Gu, Ningmei Yu, Lei Zhu, Wenhua Jia,

 Journal of Computational Information Systems, 7(4),

 1310 (2011).

 [6] Jun Sung Park, Hyo Jung Song, World Academy of

 Science, Engineering and Technology, 13, 637

 (2008).

 [7] G. A. Ruiz, J. A.Michell, Elsevier Signal Processing:

 Image Communication, 26, 289 (2011).

 [8] Haibing Yin, InTech chapter. 8, Advanced Video

 Coding for Next-Generation Multimedia Services,

 157 (2012).

 [9] Chuan-Yu Cho, Shiang-Yang Huang, Jenq-Neng

 Hwang, Jia-Shung Wang, IEEE International

 Conference on Image Processing, 3, 1016 (2005).

 [10] Shen Li, Xianghui Wei, Takeshi Ikenaga, Satoshi

 Goto, GLSVLSI, 20-24, (2007).

[11] N. S. Szabo, R. I. Tanaka, McGraw-Hill, 1967.

[12] G. Dimauro, S. Impedovo, G. Pirlo, IEEE Transaction

 on Computers, 42(5), 608 (1993).

*Corresponding author: research4charles@gmail.com

